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Dynamic sorting of lipids and proteins in cellular membranes plays a critical role in establishing and

maintaining distinct compositions in various organelles. Recent experiments found that the lipid sorting in

a membrane tube highly depends on the pulling speed at the tip. However, the mechanism of this velocity

dependence has not yet been revealed. In this Letter, we found that when a membrane is deformed rapidly,

the lipid flow induced by fast membrane shape change will significantly affect the sorting results. The

competition between the curvature-driven lipid sorting and the pulling-induced lipid flow leads to novel

behaviors. When a membrane tube is pulled out from a liquid ordered (Lo) domain at a constant speed,

slow pulling leads to the formation of a liquid disordered (Ld) tube, while fast pulling results in a Lo tube.

Interestingly, in a membrane tube pulled at an intermediate speed, alternate Ld and Lo domains appear in

the tube. The sorting dynamics and the corresponding pulling force were systematically studied. The

results of this study could lead to a better understanding of the dynamic sorting and traffic of lipids and

proteins in living cells.
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In cellular membranes, sorting and traffic of lipids and
proteins are essential to maintain the distinct compositions
in the various membrane compartments of the cell.
However, the sorting mechanism is still poorly understood.
It has been suggested that lipids and proteins can be sorted
to specific locations according to membrane curvature
[1–6]. In model membranes, experiments have shown
that the mixture of lipids in ternary system can separate
into a liquid ordered (Lo) phase and a liquid disordered
(Ld) phase [5–10]. The measured bending rigidity of the Lo

phase is almost 2 times bigger than that of the Ld phase
[5,11]. Consequently, in equilibrium, the Lo phase mainly
appears in the low curvature regions of membranes so that
the bending energy can be minimized.

A recent experiment [11] found that the lipid sorting
in membrane tubes is not only determined by curvature
but also highly dependent on the pulling speed at the tip.
Two movies in Ref. [11] show that slow pulling leads to
the formation of a Ld tube, while fast pulling results in a Lo

tube. However, why the sorting result depends on the pull-
ing speed has not yet been revealed in the theoretical study
of Ref. [11]. In most conventional treatments [11–19] about
multicomponent membranes, either the membrane shape
is fixed, or the lipid velocity induced by membrane shape
change is assumed to be small. So the Péclet number
Pe ¼ UL=D is small, and the lipid flow is negligible com-
pared to diffusion. However, the situation is dramatically
different if the deformation of membranes is fast. For a
membrane tube with diameter L� 0:1 �m, pulled at the
speed U� 10 �m=s, we have Pe� 1 if the diffusivity of
lipidsD� 1 �m2=s. Apparently, the lipid flow induced by
membrane shape change should not be neglected for this
typical pulling experiment. In this Letter, wewill show how
this lipid flow significantly affects the sorting results.

We assume that the membrane is an incompressible
binary fluid mixture composed of species A and B
[2,4,11,14]. The mixture could represent a lipid-lipid or
protein-lipid system. An order parameter is defined as
� ¼ ðcA � c1Þ=ðc2 � c1Þ, where cA is the concentration
of A and c1 and c2 are the concentrations of A in phase 1
and phase 2, respectively, on a flatmembrane. In the context
of the ternary system, phase 1 (� ¼ 0) indicates a Ld phase
and phase 2 (� ¼ 1) indicates a Lo phase. The domain
structure is modeled by Ginzburg-Landau free energy

E1 ¼
Z �

�

2
�2ð1��Þ2 þ�

2
g��
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� ffiffiffi
g

p
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where� and� are positive constants.u� are the coordinates
on the surface. g�� is the contravariant metric tensor, and g
is the determinant of the metric tensor. In these expressions,
Greek letters indicate index 1 or 2.
Canham-Helfrich energy [20,21] is modified to study

shape changes of multicomponent membranes [3]:

E2 ¼
Z �

�ð�Þ
2

ð2HÞ2 þ �Gð�ÞK þ �ð�Þ
� ffiffiffi

g
p

d2u; (2)

where H and K are mean and Gaussian curvature, respec-
tively, �ð�Þ and �Gð�Þ are bending and Gaussian rigidities,
respectively, and �ð�Þ is surface tension. �ð�Þ depends on
the composition, since its value is quite different in the Lo

and Ld phases [22]. Following Ref. [3], we assume �ð�Þ ¼
�0½1þ �1ð�2 � 1Þ�. A positive �1 indicates that phase 2
(Lo) is stiffer than phase 1 (Ld). In general, the surface
tension could also be different in the two phases [7,11].
Therefore, we further assume �ð�Þ¼�0½1þ�2ð�2�1Þ�
and the constant�2 can be positive or negative [3]. Here, we
neglect the �Gð�ÞK term in Eq. (2). The coupling of
Gaussian curvature and lipid composition shifts the position
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of a phase boundary [23] and results in a thinner neckwhich
could facilitate fission [24,25]. We also neglect the pressure
difference across the membrane, since it has only a negli-
gible effect on tube formation in big vesicles [26]. These
effects will not be discussed in our work.

The total free energy of the system can be written as

E ¼ E1 þ E2 ¼
R½fð�Þ þ �

2 g
�� @�

@u�

@�
@u�

� ffiffiffi
g

p
d2u, where

fð�Þ ¼ �
2�

2ð1��Þ2 þ �ð�Þ
2 ð2HÞ2 þ �ð�Þ. To simplify

the problem, we assume that the density and diffusivity
of two species of lipid are the same. The difference
between the chemical potentials of the two species

[27–29] is defined by Q � ð1= ffiffiffi
g

p Þ �E�� ¼ @f
@� ��r2�,

where r2 � ð1= ffiffiffi
g

p Þ @
@u� ðg��
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g

p @
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Þ. Here Q can be inter-

preted as the energy decrease or increase as the lipid
composition changes a unit value. Therefore, the diffusion
can be driven either by the nonuniform distribution of

lipids r2� or by the curvature difference through @f
@� .

Figure 1(a) illustrates the mechanism by which high
curvature drives a transition from the Lo phase to the Ld

phase. Both phases are stable for a flat membrane.
However, the Lo phase becomes less and less favorable
as the mean curvature increases, until eventually the Ld

phase is the only stable phase. The potential will become
a single-well potential with a minimum at � ¼ 0 if
�0�1ð2HÞ2 þ 2�0�2 > �=8. So sufficiently high curvature
can drive the formation of a high-flexibility Ld phase [3,6].
This conclusion is based on the implicit assumption that H
is not the function of �. The assumption is correct when a
membrane is attached to a curved substrate [6]. In this
case, the membrane curvature is fully determined by the
substrate curvature. So curvature can influence the lipid
composition, but the lipid composition cannot affect mem-
brane curvature. However, for a freestanding lipid vesicle,
the lipid composition and membrane curvature are fully
coupled. It is very difficult to solve such coupled equations
analytically. To reduce the complexity and get some

insight, we can consider the stability of a membrane tube
with uniform lipid composition. We found that, in such a
tube, the spinodal decomposition occurs when 0:21<�<
0:79 (see the discussion in Supplemental Material [34]).
Consider a typical membrane tube pulling experiment

[Fig. 1(b)]. The Reynolds number Re ¼ 	UL=
 is about
10�6 for a membrane tube with diameter L� 0:1 �m,
pulled at the speed U� 10 �m=s, given that the density
of water 	 ¼ 103 kg=m3 and the viscosity of water

 ¼ 0:001 Pa � s. So the inertial force of lipid membrane
is negligible compared to the viscous force. Furthermore,
the ratio of the viscous force to the elastic force of the
membrane can be estimated by 
UL2=�0 [30]. By using
the above parameters and �0 ¼ 10–20kBT, the above ratio
should be 0.001–0.01. This means the viscous force can
also be neglected. Therefore, both the inertial and viscous
force are negligible compared to the elastic force of
membrane, and the membrane shape is simply determined
by �E=�r ¼ 0. Notice that this conclusion is valid only
for the velocity regime we are interested in, tens of microns
per second. If the pulling speed is 1–2 orders of magnitude
higher, the viscous force applied by surrounding fluids
[31] and the friction between two leaflets [32] must be
considered.
If we assume the membrane is incompressible, its mass

density should be a constant. Therefore, from the covariant
version of the Reynolds transport theorem for a moving
surface with internal flows [30], the mass conservation of
lipids can be described by

r�V
� ¼ 2HVn; (3)

where V� and Vn are the tangent and normal components,
respectively, of the velocity V ¼ V�t� þ Vnn. Here t�
and n are the tangent vectors and unit normal vector of
the surface, respectively. If the membrane is static
(Vn ¼ 0) or flat (H ¼ 0), Eq. (3) can be reduced to the
regular incompressibility equation r�V

� ¼ 0 on a 2D
surface. By considering the diffusion of lipids, the mass
conservation of one species of lipid molecules yields a
generalized Cahn-Hilliard equation about � for a moving
membrane with internal flows:

@�

@t
þ V�r�� ¼ Mr2

�
@f

@�
��r2�

�
; (4)

whereM is a generalized diffusion constant. The derivation
of Eqs. (3) and (4) is given in the Supplemental
Material [34].

In this problem, we can define two length scales R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=2�0

p
and d ¼ ffiffiffiffiffiffiffiffiffiffi

�=�
p

, which represent the radius of
the membrane tube in the Lo phase and the width of the
phase boundary, respectively. We can also define two time
scales �1 ¼ R4=M�0 and �2 ¼ R=v0, where v0 is the pull-
ing speed at the tube tip. �1 is the time scale of diffusion,
and �2 is the time needed for the membrane tube to
move distance R at speed v0 due to the pulling at the tip.
The pulling speed at the tube tip can be normalized as

FIG. 1 (color online). (a) High curvature drives the transition
from a double-well potential to a single-well potential [3].
(b) A typical membrane tube pulling experiment. Multiple Ld

domains (blue) may appear when a tube is pulled out from a Lo

domain (red) rapidly. (c) Simulation results for the formation
and growth of multiple Ld domains in a tube that is pulled at a
speed �v0 ¼ 0:2.
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�v0 ¼ v0�1=R ¼ R3v0=ðM�0Þ, which can be interpreted as
the ratio of the two time scales, i.e.,

�v 0 ¼ �1=�2 ¼ R3v0=ðM�0Þ: (5)

This dimensionless pulling speed can also be interpreted
as the Péclet number in fluid mechanics which is the ratio
of the rate of convection to the rate of diffusion. In our
model, the length scale R is determined by �0 and �0, and
the dimension ofM is different from the classical diffusion
constant [27–30]. So this dimensionless constant differs
from the conventional definition of the Péclet number.

By using the front-fixing method [33] for moving
boundary problems, the above coupled equations can be
solved [34]. If a tube is pulled out from a Ld domain, no
lipid sorting happens, since Ld domain has lower bending
rigidity. Therefore, we consider only the case that a tube is
pulled out from a flat Lo domain at a constant speed.

First we consider two limit cases. If �v0 is very big, the
diffusion process is much slower than the pulling process.
Lipids are ‘‘frozen’’ on the surface, and the diffusion can
be neglected. So the whole membrane is still in the Lo

phase. In contrast, if �v0 is very small, the membrane shape
changes so slowly that the pulling can be regarded as a
quasistatic process. The high curvature of the tube will
drive the formation Ld phase. So the whole tube becomes
Ld phase, while the flat membrane region connected to
the tube is still in the Lo phase. Movies S1 and S2 in
Supplemental Material [35] show the two limit cases, and
the corresponding movies from experiments can be found
in Ref. [11].

If the pulling speed is comparable with the diffusion
speed, some interesting phenomena appear. For example,
when �v0 ¼ 0:1, first a Lo tube is pulled out [Fig. 2(a)].
The average value of � will decrease due to the curvature-
driven diffusion. The lowest value of� appears around the
junction between the tube and vesicle, since it is the nearest
high curvature region connected to the lipid reservoir.
When this lowest value of � is smaller than 0.79, the

spinodal decomposition occurs and one Ld domain appears
(see Movie S5 [35]). The Ld domain size grows almost
linearly with time [Fig. 2(b)]. However, the normalized
domain size, i.e., the ratio of the Ld domain length to the
total tube length, grows nonlinearly and eventually reaches
1 [Fig. 2(c)] so that the whole tube becomes Ld phase
(see Movie S3 [35]). This means the diffusion speed is
relatively fast in this case and the right interface of the Ld

domain finally catches up with the tube tip.
If the pulling is a little faster ( �v0 ¼ 0:2), Ld domains are

formed one after another around the junction between the
tube and vesicle [Fig. 3(a)]. The growth of the first four Ld

domains is shown in Fig. 3(b). All domains follow the same
pattern: formation, growth, shrinkage, and coalescence or
disappearance. Whenever the lowest � decreases to 0.79
around the neck region, a new Ld domain is formed (Movie
S6 [35]). We can observe Ld domains travel to the tube tip,
since they move faster than the pulling speed. Because of
the confinement of the boundary and the limitation of the
pulling speed, the interface close to the tube tip moves
slower than the other interface as the Ld domain ap-
proaches the tip. Consequently, the Ld domain at the tube
tip will coalesce with the neighboring domain to form a
larger Ld domain (see Movie S4 [35]). This prediction has
be verified by recent experiments [36].
The pulling forces can be calculated as F ¼ @E=@l

[4,26]. Before membrane tube formation, the response of
the membrane is linear. The slope of this region is fully
determined by the surface energy [37]. After a force bar-
rier, a membrane tube is formed and the pulling force is
saturated [Fig. 4(a)]. The saturated forces for the two limit
cases ( �v0 ¼ 10 and �v0 ¼ 0:01) are given by F ¼
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0�0

p
and F ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0�0ð1� �1Þð1� �2Þ

p
, respec-

tively. When �v0 ¼ 0:1, the pulling force decreases with
the growth of the Ld phase and finally reaches a constant
value after the whole tube becomes Ld phase. For
�v0 ¼ 0:15 and 0.2, the pulling forces lie between the two
limit cases and approach a constant with small oscillations.
The oscillation comes from the formation and coalescence
of Ld domains.

0 1000 2000 3000
0

100

200

300

dimensionless time, t/τ1

do
m

ai
n 

si
ze

formation

t=0

v0

t=250τ1

v0

t=500τ1

v0

t=1000τ1

v0

t=2500τ1

v0

(a) (b)

0 1000 2000 3000
0

50%

100%

no
m

al
iz

ed
 d

om
ai

n 
si

ze

formation

dimensionless time, t/τ1

(c)

FIG. 2 (color online). (a) The time evolution of the membrane
shape and lipid composition at �v0 ¼ 0:1 (also see Movie S3
[35]). Red and blue represent Lo and Ld phases, respectively.
(b) The Ld domain size and (c) normalized domain size vs
dimensionless time. For all the simulations in this work, we
use the same parameters: �1 ¼ 0:5, �2 ¼ 0, �R2=�0 ¼ 3 and
�=�0 ¼ 1.
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FIG. 3 (color online). (a) The time evolution of the membrane
shape at �v0 ¼ 0:2 (more details in Movie S4 [35]). (b) The
domain size and (c) normalized domain size of the first four Ld

domains vs dimensionless time.
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The length percentage of all Ld domains can be defined
as � ¼ P

ild;i=l, where l is the tube length and ld;i is the
size of the ith Ld domain at a specific time [Fig. 1(c)].
When the pulling speed is very big ( �v0 ¼ 10), the whole
membrane is still in the Lo phase so that � is always zero
[Fig. 4(b)]. When �v0 is very small ( �v0 ¼ 0:01), one Ld

domain forms right after the membrane tube is formed, and
thereafter the whole membrane is in Ld phase. So � is a
step function from 0 to 100 percent. When �v0 ¼ 0:1, only
one Ld domain forms and � increases nonlinearly with
time and finally reaches 100 percent. When �v0 ¼ 0:15 or
0.2, multiple Ld domains are formed, and � approaches a
constant that depends on �v0. Similar to the pulling force,
there are some small oscillations resulting from the for-
mation and coalescence of Ld domains. Notice that if �v0

is very small ( �v0 ¼ 0:01), the formation of the Ld domain
is limited by the pulling speed, since it requires the tube
formation. Therefore, the formation time of the Ld domain
is bigger than other cases [see the red curve in Fig. 4(b)]
and determined by the tube formation time, while the
formation time of the first Ld domain is almost the same
in other cases because the formation time is set by the
diffusion, not the pulling speed, when the pulling speed
is big. In this case, the formation time, or waiting time,
can be simply estimated as T � L2=M�0 � �1L

2=R4,
where L is the membrane radius on the left boundary.
In the simulation, we use L ¼ 10R. Therefore, the waiting
time T � 102�1, which is consistent with our numerical
results (Figs. 2–4).

To study how curvature-driven diffusion itself affects the
sorting process, we pull out a tube from a Lo domain very
quickly and then decrease �v0 to zero to exclude the effects
of lipid flow induced by membrane shape change. Since
the initial pulling speed is very big, the whole membrane is
still in the Lo phase as we have shown above. After the
pulling is stopped, one Ld domain forms around the junc-
tion and grows nonlinearly with time [Fig. 5(a)]. The pull-
ing force decays as the Ld domain grows until the whole
tube is occupied by the Ld phase [Fig. 5(a)], which is
consistent with experimental results (Fig. S5 of Ref. [11]).
Interestingly, we found that the pulling force is approxi-
mately linear with the length percentage of the Ld domain
[Fig. 5(b)]. This conclusion is also valid when the pulling
speed is a nonzero constant [Fig. 5(b)].
To get more insight about pulling force, we can develop a

simplified model. To simplify the problem, we focus on the
pulling process after the tube is formed, so that we do not
have to consider the force barrier during tube formation and
neglect the catenoid region. Furthermore, we assume that
the energy of phase boundaries is small compared with the
energy of each phase. Therefore, in terms of the length
percentage of all Ld domains� ¼ P

ild;i=l, the total energy
of the system,E1 þ E2 [see Eqs. (1) and (2)], is simplified to

E¼2�rdl�

�
�dþ �d

2r2d

�
þ2�rolð1��Þ

�
�oþ �o

2r2o

�
; (6)

where �d (�o),�d (�o), and rd (ro) are the bending rigidity,
surface tension, and radius, respectively, of Ld (Lo) do-
mains. The equations @E=@rd ¼ 0 and @E=@ro ¼ 0 yield

the radius of each phase: rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d=ð2�dÞ

p
and ro ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�o=ð2�oÞ
p

. The pulling force can be simply given by

F ¼ @E=@l ¼ Fo � �ðFo � FdÞ; (7)

where Fd ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�d�d

p
and Fo ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�o�o

p
are the

pulling forces for the pure Ld and Lo phase, respectively.
So the pulling force is linear with �, which in turn is
determined by diffusion of lipids and the lipid flow induced
by pulling. If �v0 is very small, the membrane tube is
completely occupied by the Ld phase. So � ¼ 1 and the
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Lo phase, respectively. (b) The pulling force is approximately
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pulling force is Fd. If �v0 is very big, the whole tube is
still in the Lo phase. So � ¼ 0 and the pulling force is Fo.
The prediction in Eq. (7) agrees with simulation results for
various pulling speeds very well [Fig. 5(b)]. Notice that
Eq. (7) is based on the assumption that the energy is a
single-valued continuous function of l. So this is not
applicable to the experiment where stepwise tube length
extension was used [11].

In conclusion, we have shown how the competition
between the pulling-induced lipid flow and the curvature-
driven lipid sorting determines the formation, growth, and
motion of the Ld domains when membrane tubes are pulled
out from a Lo domain with various pulling speeds. The
time evolutions of membrane shape and lipid composition
within different regimes of pulling speed were investi-
gated. In all cases, the pulling force is approximately linear
with the length percentage of all Ld domains. We further
derived a simple expression for the pulling force needed to
pull out a multicomponent membrane tube.

This curvature-driven dynamic sorting mechanism
might be crucial for many biological processes in living
cells. For example, lipid domains have already been found
in the membrane regions exhibiting controlled curvatures
and fast shape changes, such as membrane protrusions
(filopodia) and adhesion points [38–40], flagellar and cil-
iary membranes [41,42], pollen tube tips [43], and bacterial
cell poles and septum [44].

We thank Thomas R. Powers and Tobias Baumgart for
useful discussions on the work.

*Corresponding author.
hjiang12@jhu.edu

[1] S. Mukherjee and F. R. Maxfield, Traffic 1, 203 (2000).
[2] A. Tian and T. Baumgart, Biophys. J. 96, 2676 (2009).
[3] H. Y. Jiang and T. R. Powers, Phys. Rev. Lett. 101, 018103

(2008).
[4] B. Sorre, A. Callan-Jones, J.-B. Manneville, P. Nassoy,

J.-F. Joanny, J. Prost, B. Goud, and P. Bassereau, Proc.
Natl. Acad. Sci. U.S.A. 106, 5622 (2009).

[5] A. Roux, D. Cuvelier, P. Nassoy, J. Prost, P. Bassereau,
and B. Goud, EMBO J. 24, 1537 (2005).

[6] R. Parthasarathy, C. H. Yu, and J. T. Groves, Langmuir 22,
5095 (2006).

[7] T. Baumgart, S. T. Hess, and W.W. Webb, Nature (London)
425, 821 (2003).

[8] S. L. Veatch and S. L. Keller, Biophys. J. 85, 3074 (2003).
[9] H. J. Kaiser, D. Lingwood, I. Levental, J. L. Sampaio, L.

Kalvodova, L. Rajendran, and K. Simons, Proc. Natl.
Acad. Sci. U.S.A. 106, 16 645 (2009).

[10] T. S. Ursell, W. S. Klug, and R. Phillips, Proc. Natl. Acad.
Sci. U.S.A. 106, 13 301 (2009).

[11] M. Heinrich, A. Tian, C. Esposito, and T. Baumgart, Proc.
Natl. Acad. Sci. U.S.A. 107, 7208 (2010).

[12] U. Seifert, Phys. Rev. Lett. 70, 1335 (1993).
[13] F. Julicher and R. Lipowsky, Phys. Rev. E 53, 2670 (1996).
[14] T. Taniguchi, Phys. Rev. Lett. 76, 4444 (1996).

[15] B. Rozycki, T. R. Weikl, and R. Lipowsky, Phys. Rev. Lett.
100, 098103 (2008).

[16] X. Q. Wang and Q. Du, J. Math. Biol. 56, 347 (2007).
[17] R. Mukhopadhyay, K. C. Huang, and N. Wingreen,

Biophys. J. 95, 1034 (2008).
[18] J. S. Lowengrub, A. Ratz, and A. Voigt, Phys. Rev. E 79,

031926 (2009).
[19] T. Taniguchi, M. Yanagisawa, and M. Imai, J. Phys.

Condens. Matter 23, 284103 (2011).
[20] P. B. Canham, J. Theor. Biol. 26, 61 (1970).
[21] W. Helfrich, Z. Naturforsch. C 28, 693 (1973).
[22] A. Tian, B. R. Capraro, C. Esposito, and T. Baumgart,

Biophys. J. 97, 1636 (2009).
[23] F. Julicher and R. Lipowsky, Phys. Rev. Lett. 70, 2964

(1993).
[24] C.M. Chen, P. G. Higgs, and F. C. MacKintosh, Phys. Rev.

Lett. 79, 1579 (1997).
[25] J.M. Allain, C. Storm, A. Roux, M. Ben Amar, and

J. F. Joanny, Phys. Rev. Lett. 93, 158104 (2004).
[26] I. Derenyi, F. Julicher, and J. Prost, Phys. Rev. Lett. 88,

238101 (2002).
[27] D. Jasnow and J. Vinals, Phys. Fluids 8, 660 (1996).
[28] G. Santonicola, R. Mauri, and R. Shinnar, Ind. Eng. Chem.

Res. 40, 2004 (2001).
[29] N. Vladimirova, A. Malagoli, and R. Mauri, Chem. Eng.

Sci. 55, 6109 (2000).
[30] T. R. Powers, Rev. Mod. Phys. 82, 1607 (2010).
[31] O. Rossier, D. Cuvelier, N. Borghi, P. H. Puech, I. Derényi,
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I. THE DERIVATION OF GOVERNING EQUATIONS

The mass conservation of lipids can be described by the covariant version of Reynolds transport theorem for a
moving surface with internal flows [1],

d

dt

∫

S(t)

Φ dS =
∫

S(t)

[
dΦ
dt

+ Φ ∇αV α − 2ΦHVn

]
dS, (S1)

where Φ is an arbitrary scalar quantity and dΦ
dt = ∂tΦ + V α∂αΦ is the total time derivative. V α and Vn are the

tangent and normal components of the velocity V = V αtα + Vnn, where tα and n are the tangent vectors and unit
normal vector of the surface, respectively.

The mass density ρ of an incompressible membrane should be a constant. By replacing Φ by ρ in Eq. S1 and using
dρ
dt = 0, we have [1]

∇αV α = 2HVn. (S2)

This equation is similar to the incompressibility equation ∇ ·V = 0 in fluid mechanics.
By considering the diffusion of lipids, the mass conservation of one species of lipid molecules yields another equation

d

dt

∫

S(t)

φdS = −
∮

∂S(t)

Jαmα dL (S3)

where m is the unit tangent vector perpendicular to the boundary ∂S(t). And J = −M∇Q is the diffusive flux within
the surface, where M is a generalized diffusion constant and Q = 1√

g
δE
δφ = ∂f

∂φ−µ∇2φ is the chemical potential defined
in the main text.

Notice that φ also satisfy Eq. S1. Therefore, combining Eq. S1 and Eq. S3, and using Eq. S2 and the covariant
form of Green’s theorem for a two-dimensional surface [1]

∫

S(t)

∇αJα dS =
∮

∂S(t)

Jαmα dL (S4)

we have a generalized Cahn-Hilliard equation about order parameter φ for a moving surface with internal flows

∂φ

∂t
+ V α∇αφ = M∇2

[
∂f

∂φ
− µ∇2φ

]
. (S5)

In this problem, we can define two length scales

R =
√

κ0

2σ0
and d =

√
µ

λ
. (S6)

The first length scale represents the radius of membrane tube in Lo phase. The factor of 2 is introduced for convenience.
Indeed, assuming that the membrane is uniform (φ = 1) and minimizing Canham-Helfrich energy, we may verify the
radius of membrane tube in Lo phase is R. The second length scale represents the width of the phase boundary.

∗Corresponding author. hjiang12@jhu.edu
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We can also define three time scales

τ1 =
R4

Mκ0
, τ2 =

R

v0
and τ3 =

R2

Mλ
(S7)

where v0 is the pulling speed at the tip of membrane tube, and τ2 is the time needed for membrane tube to move
distance R at speed v0 due to the pulling at the tip. τ1 is the time scale of diffusion if we use κ0 as energy measure to
normalize the equations. τ3 is the time scale of diffusion determined by mixing free energy λ, if we use λR2 as energy
measure to normalize the equations.

By using τ1 and R, Eq. S5 can be transferred to dimensionless forms:

∂φ

∂t̄
+ V̄ α∇αφ = ∇2

[
λ̄φ(1− φ)(1− 2φ) + α1φ(2H)2 + 2α2φ− µ̄∇2φ

]
. (S8)

where t̄ = t/τ1 and V̄ α = V ατ1/R. Two dimensionless constants λ̄ = λR2/κ0 and µ̄ = µ/κ0 are defined here. The
pulling speed at the tube tip can be normalized as v̄0 = v0τ1/R = R3v0/(Mκ0), which can also be interpreted as
the ratio of the two time scales, i.e., v̄0 = τ1/τ2 = R3v0/(Mκ0). For all the simulations in this paper, we use λ̄ = 3,
µ̄ = 1, α1 = 0.5, α2 = 0 and vary v̄0 to study how the dimensionless pulling speed affects the lipid sorting process.

II. COMPUTATIONAL DETAILS

The membrane shape, lipid velocity and the lipid composition can be solved from the coupled equations:

δE/δr = 0,

∇αV α = 2HVn,

∂φ

∂t
+ V α∇αφ = M∇2

[
∂f

∂φ
− µ∇2φ

]
.

These equations are not closed equations. Usually we need another equation about force balance and introduce a
pressure field within the membrane surface [1]. However, the situation is simplified in this problem since the membrane
shape and velocity field are axisymmetric and V 1, the tangent velocity along the circumferential direction of the tube,
vanishes. At the same time, the normal components of the velocity, Vn, is only determined by the motion of surface
X(t). So Vn is known once the membrane shape is solved from Eq. S9. Therefore, the pressure and velocity are
decoupled and we only need to solve the tangent velocity along the pulling direction V 2 from Eq. S2.

This is a moving boundary problem. Fortunately, the motion of the pulling point is known in this problem. If the tip
of the membrane tube moves at a speed v(t), the membrane can be normalized by the pulling distance L(t) =

∫ t

0
vdt.

To solve the problem, we assume the membrane shape, composition distribution and velocity field are axisymmetric.
By using the front-fixing method [2] for moving boundary problems, the position of the membrane can be given by
X = [r(η, t) cos θ, r(η, t) sin θ, z(η, t)], where η is within a fixed interval (0, 1). The boundary conditions for z are
z(0, t) = 0 and z(1, t) = L(t). Besides the motion of the pulling point, the phase boundaries between Ld phase and Lo
phase also moves. In this phase field model, the lipid composition is represented by the order parameter φ. Therefore,
the phase boundary can be easily tracked by the temporal and spatial variation of φ.

When a point force is applied, the governing equations S9, S2 and S5 are singular and the mean curvature goes to
infinity at the tip (see the discussion of Ref. [3]). But the singularity can be eliminated by cutting off the tip with a
small radius r0 [3, 4]. In another word, the boundary condition at the tip is r = r0, instead of r = 0. This treatment is
also consistent with the experiment by M.Heinrich et al [5], where there is no end cap of the membrane tube because
a bead was used to pull the membrane. We explored various cutting-off radius r0. We found that a small Ld domain
can be formed at the cap region of the tube when the cutting-off radius r0 is small, but no Ld domain is formed when
r0 is big enough (close to the tube radius). Furthermore, we found the formation of Ld domains around the junction
region between tube and the giant vesicle always exists no matter what the value of r0 is used. Therefore, our model
is different from the stripe-type phase separation induced by the higher curvature at the end cap of a cylindrical
vesicle [6].

III. LOCALIZED SPINODAL DECOMPOSITION

In the main text, we argue that the double-well potential will become a single-well potential if κ0α1(2H)2+2σ0α2 >
λ/8. This conclusion is based on the implicit assumption that H is not the function of φ. The assumption is correct
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when a membrane is attached to a curved substrate [7]. In this case, the membrane curvature is fully determined
by the substrate curvature. So curvature can influence the lipid composition, but the lipid composition cannot affect
membrane curvature. However, for a free-standing lipid vesicle, the lipid composition and membrane curvature are
fully coupled. It’s very difficult to solve such coupled equations analytically. To reduce the complexity and get some
insight, we consider the stability of a membrane tube with uniform lipid composition φ0. The free energy is given by

E =
[
λ

2
φ0

2(1− φ0)2 +
κ(φ0)

2
1
r2

+ σ(φ0)
]

2πrl (S9)

where r and l are the radius and length of the membrane tube. δE/δr = 0 yields the equilibrium radius r(φ0) =√
κ(φ0)

2σ(φ0)+λφ2
0(1−φ0)2

. Therefore, f can be rewritten as

f(φ0) =
λ

2
φ0

2(1− φ0)2 +
κ(φ0)

2
1

r(φ0)2
+ σ(φ0) = λφ0

2(1− φ0)2 + 2σ(φ0) (S10)

If we assume σ(φ0) = σ0 so that surface energy is a constant, f is reduced to

f(φ0) = λφ0
2(1− φ0)2 + 2σ0 (S11)

In our simulation, we always use σ(φ0) = σ0. Therefore, after consider the coupling between lipid composition and
membrane curvature of a free-standing membrane tube, the free energy is always a double-well potential. It should
be noted that along the curve of the double-well potential, not only lipid composition changes, but also membrane
curvature (tube radius) changes (Eq. S11). So this is different from the assumption of Fig. 1(a) in the main text,
where H is a constant for each curve.

The system is unstable and phase separation spontaneously occurs when the curvature of the double-well potential
is negative, i.e., ∂2f/∂φ2

0 < 0 [8]. The spinodal decomposition point is given by ∂2f/∂φ2
0 = 0. For the double-well

potential we used in this paper, the spinodal decomposition occurs when 0.21 < φ0 < 0.79.
Go back to our original problem. For a membrane tube pulled out from a Lo domain (φ = 1), the average value

of the order parameter will decrease due to the curvature-driven diffusion. The lowest value of φ appears around the
neck region since it’s the nearest high curvature region connected to the lipid reservoir. When this lowest value of φ
is smaller than 0.79, the spinodal decomposition occurs and Ld domains appear. This is clearly showed in Movie S5
and S6 when v̄0 = 0.1 and 0.2.

To summarize, the curvature-driven diffusion changes the lipid composition and finally the lipid mixture around
the neck region becomes unstable, which leads to the spinodal decomposition and the appearance of alternate Ld and
Lo domains. The pulling speed will determine the travelling speed and the number of Ld domains. There is only one
Ld domain for v̄0 = 0.1, but multiple Ld domains for v̄0 = 0.2. If the pulling speed is very big, the lowest φ never
falls below 0.79 so that spinodal decomposition doesn’t occur at all.

IV. A SIMPLE THEORY ABOUT PULLING FORCE

To get more insight about pulling force, we can develop a simplified model. Assume the total length of the membrane
tube is l and the total length of all Ld domains is ld =

∑
i ld,i, where ld,i is the domain size of the i-th Ld domain at

a specific time (see Fig. 1C). Therefore, the length percentage or the normalized size of all Ld domains is β = ld/l.
To simplify the problem, we focus on the pulling process after the membrane tube is formed so that we don’t have to
consider the force barrier during tube formation and neglect the catenoid region. Furthermore, we assume the energy
of phase boundaries are small compared with the energy of each phase. Therefore, the total energy of the system,
E1 + E2 (see Eq. 1 and 2 in the main text), is simplified to

E = 2πrdlβ(σd +
κd

2r2
d

) + 2πrol(1− β)(σo +
κo

2r2
o

) (S12)

where κd (κo), σd (σo) and rd (ro) are the bending stiffness, surface tension and radius of Ld (Lo) domains, respectively.
The equations ∂E/∂rd = 0 and ∂E/∂ro = 0 yield the radius of each phase rd =

√
κd/(2σd) and ro =

√
κo/(2σo).

The pulling force can be simply given by

F = ∂E/∂l = Fo − β(Fo − Fd) (S13)

where Fd = 2π
√

2κdσd and Fo = 2π
√

2κoσo are the pulling forces for pure Ld and Lo phase, respectively. So the
pulling force is linear with β, which in turn is determined by diffusion of lipids and the lipid flow induced by pulling.
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If the pulling speed is very small, the membrane tube is completely occupied by Ld phase. So β = 1 and the pulling
force is Fd. If the pulling speed is very big, the whole tube is still in Lo phase. So β = 0 and the pulling force is
Fo. The prediction in Eq. S13 agrees with simulation results for various pulling speeds very well (Fig. 5(b)). For
intermediate pulling speeds (v̄0 = 0.15 and v̄0 = 0.2), the pulling force finally approaches a constant between Fd and
Fo with small oscillations (Fig. 4(b) and Fig. 5(b)). It should be noted that Eq. S13 is based on the assumption that
the energy is a single-valued continuous function of l. So this is not applicable to the experiment where step-wise
total tube length extension was used [5].

In this simplified model, the driving force for the Ld domain growth, i.e., the energy decrease as β increases a unit
value, can be defined as q = −∂E/∂β = (Fo − Fd)l. Only when Fo = Fd or κdσd = κoσo, the driving force q is zero
and the system is in equilibrium. Fo is usually bigger than Fd (see SI of Ref. [5]). Therefore, the driving force q will
drive the formation of the lower energy Ld phase so that the total energy of the membrane tube is decreased.

The above method can also be used to explain the force decay when one Ld domain nucleates and grows in a Lo
tube with fixed length (Fig. 4A). If the tube length l is a constant, the pulling force is introduced as a Lagrange
multiplier to impose this constraint in the free energy as E′ = E − Fl. The condition ∂E′/∂l = 0 yields the same
pulling force as Eq. S13.

It should be noted that the decreased energy is dissipated during the formation of Ld phase through irreversible
diffusion process. For example, if the tip of the membrane tube is fixed as we discussed in the last section, the pulling
force doesn’t do any work to the system since the tube length l is a constant. The decreased energy is totally used
to drive the formation of Ld phase. If the membrane tube is pulled at a constant speed v0, there is an energy input
by the pulling force at the rate Fv0. If the rate of the energy input Fv0 ∼ κ0/τ2 is comparable with the rate of the
energy dissipation Mκ2

0/R4 ∼ κ0/τ1 that drives the formation of Ld phase, the convection shouldn’t be neglected.
Therefore, the dimensionless pulling speed v̄0 can also be interpreted as the ratio of the above rates, which gives v̄0

another interpretation besides the Péclet number.
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